Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Journal of Peking University(Health Sciences) ; (6): 346-352, 2020.
Article in Chinese | WPRIM | ID: wpr-942010

ABSTRACT

OBJECTIVE@#Tissues loss due to periodontal disease is typically treated by a variety of regenerative treatment modalities, including bone grafts, guided tissue regeneration (GTR) and growth factors, to reform the supporting tissues of teeth. Concentrated growth factors (CGF) are produced by centrifuging blood samples at alternating and controlled speeds using a special centrifuge. The purpose of this study was to evaluate whether GTR could improve the effect of CGF combined with bone graft in the treatment of classII furcations of mandibular molars.@*METHODS@#In the present study, thirty-five classII furcation involvements were included and randomly divided into two groups. The experimental group (n=17) accepted GTR combined with CGF and bone graft therapy, and the controlled group (n=18) accepted CGF combined with bone graft therapy. The clinical examinations and cone beam computed tomography (CBCT) were performed at baseline and 1 year post-surgery. Comparisons of clinical and CBCT data before and after operation between the experimental group and the control group were made.@*RESULTS@#The clinical and CBCT data of both groups were not statistically different at baseline (P>0.05). At the end of 1 year post-surgery, the clinical parameters of both groups were significantly improved (P<0.001). The probing depths of the experimental group were (4.81±1.95) mm and (3.56±1.94) mm, respectively, significantly higher than the changes of the control group (P<0.001). The vertical and horizontal attachment gains of the experimental group were (4.11±1.98) mm and (3.84±1.68) mm, respectively, significantly higher than the changes of the control group (P<0.001). At the end of 1 year post-surgery, the experimental group showed significantly higher bone gain at vertical and horizontal directions compared with those of the control group: (3.84±1.68) and (3.88±2.12) mm, respectively (P<0.001).@*CONCLUSION@#Within the limitation of the present study, GTR showed positive role in the effect of CGF combined with bone graft in the treatment of classII furcation involvements of mandibular molars.


Subject(s)
Humans , Bone Transplantation , Cone-Beam Computed Tomography , Furcation Defects , Guided Tissue Regeneration, Periodontal , Molar , Periodontal Attachment Loss
2.
Journal of Peking University(Health Sciences) ; (6): 86-92, 2019.
Article in Chinese | WPRIM | ID: wpr-941775

ABSTRACT

OBJECTIVE@#To investigate stability of skeletal hard tissues, dental hard tissues and soft tissues after orthodonticorthognathic treatment in a long term. This study reviewed longitudinal changes in orthodontic-orthognathic patients of skeletal class III malocculsion, using lateral cephalometric radiographs in 3-12 years after treatment in comparison to treatment finishing.@*METHODS@#Twenty-two patients with skeletal Class III malocclusion following orthodontic-orthognathic surgery in Peking University School and Hospital of Stomatology from January 1, 2000 to January 1, 2009 were observed. The lateral cephalometric radiographs of the following stages were collected: treatment finishing (T1), 3 to 12 years after treatment (T2). Statistical analyses of cephalometrics were evaluated. Paired student t test was performed by SPSS 17.0.@*RESULTS@#Data of all the 22 patients were studied in longitudinal timeline after treatment and 3-12 years after treatment. From T1 to T2, we evaluated 11-SN (angle between the upper incisors axis and SN plane), 11-NA angle (angle between the upper incisors axis and NA plane), 11-NA mm (perpendicular distance from upper incisors to NA plane), 11-41 (angle between the upper incisors axis and lower incisors axis), 41-NB angle (angle between lower incisors and NB plane), 41-NB (perpendicular distance from lower incisors to NB plane), 41-MP angle (angle between lower incisors and GoGn plane), and IMPA [angle between lower incisor and mandibular plane (tangent line to submandibular border)]. Most hard tissues of the teeth remained stable but upper anterior teeth angulations decreased, indicating by significantly reducing 11-SN (T1: 110.98°±6.77°; T2: 109.21°±5.80°; P=0.005); reducing 11-NA (T1: 28.31°±6.80°; T2: 26.49°±6.18°; P=0.002); increasing 11-41 (T1: 123.51°±8.14°; T2: 125.7°±10.01°; P=0.035). From T1 to T2, we also evaluated SNA (angle of sella-nasion-A-point), SNB (angle of sella-nasion-B-point), ANB (angle of A-point-nasion-B-point), GoGn-SN (angle between GoGn and SN plane), GoGn-FH (angle between GoGn and Frankfort plane), Y axis (angel between Sella-Gn and Frankfort plane), N-ANS (distance from nasion point to ANS point), ANS-Me (distance from ANS point to Menton point), N-Me (distance from nasion point to Menton point), ANS-Me/N-Me% (proportion of ANS-Me to N-Me), and FMA (angle between Frankfort and mandibular plane), Wits appraisal (horizontal distance between points A and B on functional occlusal plane). Skeletal hard tissues also remained relatively stable, only N-Me value changed significantly with a decreasing facial height (T1: 124.98°±11.98°; T2: 122.4°±11.05°; P=0.024). From T1 to T2, we finally evaluated FH-NsPg angle (angle between NsPg and Frankfort plane), H angle (angel between H line and NB), FH-A'UL angle (angle between A'UL and Frankfort plane), FH-B'LL angle (angle between B'LL and Frankfort plane), UL-LL (angle between UL and LL), UL-EP (distance between UL and E line), LL-EP (distance between LL and E line), Sn-H (perpendicular distance between Sn point and H line), Nls-H (distance of nose-lip-sulcus to H line), Li-H (lower lip to H line), Si-H (lower lip sulcus to H line), and NLA (nasolabial angle, angle of Cm-Sn-UL-point). Soft tissues changes were observed in decreasing UL-EP [T1: (-2.78±2.20) mm; (-3.29±2.44) mm; P=0.02] and H angle (T1: 8.27°±3.71°; 7.32°±3.83°; P=0.006). Other soft tissues remained relatively stable by retruding upper lip position and chin changes with no statistical significance.@*CONCLUSION@#Orthodontic-orthognathic treatment can improve esthetics and occlusal function in patients of skeletal class III malocclusion with a stable long-term outcome.


Subject(s)
Humans , Cephalometry , Facial Bones , Malocclusion, Angle Class III , Mandible , Maxilla , Orthognathic Surgical Procedures
3.
Chinese Medical Journal ; (24): 4018-4021, 2012.
Article in English | WPRIM | ID: wpr-339907

ABSTRACT

<p><b>BACKGROUND</b>Enamel decalcification in orthodontics is a concern for dentists and methods to remineralize these lesions are the focus of intense research. The aim of this study was to evaluate the remineralizing effect of casein phosphopeptide amorphous calcium phosphate (CPP-ACP) nanocomplexes on enamel decalcification in orthodontics.</p><p><b>METHODS</b>Twenty orthodontic patients with decalcified enamel lesions during fixed orthodontic therapy were recruited to this study as test group and twenty orthodontic patients with the similar condition as control group. GC Tooth Mousse, the main component of which is CPP-ACP, was used by each patient of test group every night after tooth-brushing for six months. For control group, each patient was asked to brush teeth with toothpaste containing 1100 parts per million (ppm) of fluoride twice a day. Standardized intraoral images were taken for all patients and the extent of enamel decalcification was evaluated before and after treatment over this study period. Measurements were statistically compared by t test.</p><p><b>RESULTS</b>After using CPP-ACP for six months, the enamel decalcification index (EDI) of all patients had decreased; the mean EDI before using CPP-ACP was 0.191 ± 0.025 and that after using CPP-ACP was 0.183 ± 0.023, the difference was significant (t = 5.169, P < 0.01). For control group, the mean EDI before treatment was 0.188 ± 0.037 and that after treatment was 0.187 ± 0.046, the difference was not significant (t = 1.711, P > 0.05).</p><p><b>CONCLUSION</b>CPP-ACP can effectively improve the demineralized enamel lesions during orthodontic treatment, so it has some remineralization potential for enamel decalcification in orthodontics.</p>


Subject(s)
Adolescent , Female , Humans , Male , Caseins , Chemistry , Therapeutic Uses , Dental Enamel , Orthodontics , Methods
SELECTION OF CITATIONS
SEARCH DETAIL